
Draft version November 11, 2022

Typeset using LATEX preprint style in AASTeX631

Solar Energetic Particle Acceleration at a Spherical Shock with the Shock Normal
Angle θBn Evolving in Space and Time

Xiaohang Chen,1 Joe Giacalone,1 and Fan Guo2

1Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ United States
2Los Alamos National Laboratory, Theoretical Division, Los Alamos, NM United States

ABSTRACT

We present a 2D kinematic model to study the acceleration of solar energetic particles
(SEPs) at a shock driven by a coronal mass ejection. The shock is assumed to be
spherical about an origin that is offset from the center of the Sun. This leads to
a spatial and temporal evolution of the angle between the magnetic field and shock
normal direction (θBn) as it propagates through the Parker spiral magnetic field from
the lower corona to 1 AU. We find that the high-energy SEP intensity varies significantly
along the shock front due to the evolution of θBn. Generally, the west flank of the
shock preferentially accelerates particles to high energies compared to the east flank
and shock nose. This can be understood in terms of the rate of acceleration, which
is higher at the west flank. Double power-law energy spectra are reproduced in our
model as a consequence of the local acceleration and transport effects. These results
will help better understand the evolution of SEP acceleration and provide new insights
into large SEP events observed by multi-spacecraft, especially those close to the Sun,
such as Parker Solar Probe and Solar Orbiter.

Keywords: Solar energetic particle, interplanetary shock, coronal mass ejection

1. INTRODUCTION

Solar energetic particles (SEPs) are high-energy particles accelerated during eruptive events near
the Sun, such as solar flares and coronal mass ejections (CMEs) (see reviews by Reames 1999; Desai
& Giacalone 2016). Large SEP events are of particular interest to space weather because they pose
a serious radiation hazard to astronauts and electronic equipment in space. In the most-intense
events, SEPs with sufficiently high energy (about a few GeV nucleon−1) can penetrate inside the
Earth’s atmosphere and produce secondary neutrons that can be detected by ground-based neutron
monitors. These are known as the ground-level enhancements (GLEs) (Forbush 1946; Meyer et al.
1956). It is widely believed that large SEP events, especially GLEs, are associated with collisionless
shocks driven by fast and wide CMEs (Kahler et al. 1978; Gosling 1993; Gosling et al. 1981; Lario
et al. 2003; Giacalone 2012).
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In these events, SEPs are accelerated by a CME-driven shock continuously from the Sun to several
AU and spread over a broad range of heliolongitudes. Multi-spacecraft observations have shown
that the time-intensity profiles of a single SEP event often exhibit significantly variations at widely
separated heliospheric locations which are well organized by magnetic connectivity to the origin of
CMEs (Lario et al. 2016). It is not presently clear how the intensity varies along the shock front
for any given shock, however. Also, the energy spectra of SEPs usually show an exponential rollover
(Ellison & Ramaty 1985) or a double power-law (Band et al. 1993) feature with the break energy
depending on the ion charge-to-mass ratio (Cohen et al. 2005; Mewaldt et al. 2005). So far, a
number of scenarios are proposed to be important in reproducing double power-law spectra, such
as finite acceleration time, finite shock size, shock geometry, adiabatic cooling and particle escape
(e.g., Channok et al. 2005; Li et al. 2009; Schwadron et al. 2015; Zhao et al. 2016; Kong et al.
2019; Fraschetti & Balkanski 2022), which can be classified as either a local acceleration process or
a transport effect. However, which one is the dominant factor and how the spectra evolve in space
and time as the shock propagates through the interplanetary magnetic fields (IMF) remain unclear.

It is widely believed that diffusive shock acceleration (DSA) is the primary acceleration mechanism
in producing energetic particles in many heliophysics and astrophysical systems (Axford et al. 1977;
Krymskii 1977; Bell 1978; Blandford & Ostriker 1978; Jokipii 1982). Particles are accelerated as they
move across the strong plasma compression at the shock front. For efficient acceleration, the particles
must remain near the shock, and this is caused by the scattering within magnetic irregularities in the
solar wind. This acceleration process naturally predicts a universal power-law momentum distribution
f ∝ p−γ, with the index γ only depending on the shock compression ratio (ratio of the downstream
to upstream plasma density, which is related to the velocity compression). The acceleration time
to a certain energy (acceleration rate) scales inversely with diffusion coefficients that are associated
with local magnetic turbulence (e.g., Forman & Drury 1983; Jokipii 1987). The shock geometry also
plays a critical role in regulating the acceleration and transport processes (Giacalone et al. 1994;
Giacalone 2004; Guo et al. 2010; Kong et al. 2017). Generally, charged particles in the IMF have
a much smaller diffusion coefficient perpendicular to the mean magnetic field than that parallel to
it. This gives rise to a larger acceleration rate at a quasi-perpendicular shock (θBn > 45◦; θBn is the
angle between the upstream magnetic field and the shock normal) than that at a quasi-parallel shock
(θBn < 45◦). However, the situation is not so simple because, as CME-driven shocks travel in the
IMF, the shock normal angle is neither simply perpendicular nor parallel but evolves in both space
and time. For example, for a shock near the Sun, the IMF is almost radial and θBn varies from ∼ 0◦

at the shock nose to ∼ 90◦ near the shock flanks (Figure 1(a)); for the shock at/beyond 1 AU, the
upstream magnetic field is nearly uniform and θBn ∼ 45◦ (Figure 1(b)). These geometric effects could
significantly change the acceleration rate along the shock front and thus account for the longitudinal
dependence of SEP observations at 1 AU. The duration of magnetic-field line connectivity to the
shock also likely plays a significant role since, generally, particles remain relatively close to magnetic
lines of force.

Until relatively recently, the problem of particle acceleration at evolving shocks in which θBn varies
along the shock front has received little attention. For example, Giacalone (2017) investigated the
distribution of energetic particles at a spherical blast wave in a nearly uniform magnetic field where
shock normal angle θBn varied from quasi-parallel at the poles to quasi-perpendicular near the equa-
tor. Kong et al. (2017, 2019) studied SEP energization at coronal shocks propagating in the streamer-
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Figure 1. IMF topology associated with a CME-driven shock in the regions (a) near the Sun and (b) at 1
AU.

like magnetic field near the sun. Hu et al. (2017); Li et al. (2021) combined the MHD simulation and
focused-transport equation to simulate the SEP events observed at 1 AU where source particles were
injected at the shock according to the one-dimensional DSA solutions. However, these works either
mainly focus on the SEP acceleration near the Sun or the transport processes in the IMF. There is
still a lack of work studying the spatial and temporal evolution of SEP acceleration from the Sun to
1 AU.

In this paper we present results from a 2D kinematic model of the acceleration of SEPs at a
CME-driven shock in the IMF. We focus on the geometric effects on SEP acceleration near the Sun
and the so-called energetic storm particle (ESP) phase of SEP events. This approach makes no
attempt to simulate any particular observed SEP event but focuses instead on fundamental aspects
of this problem which provide new insights of the potential geometric effects on SEP acceleration and
distribution associated with fast and wide CMEs (e.g. GLEs). We describe the numerical model in
the next section with more details provided in the Appendix. The results of simulation are presented
in Section 3 and the conclusions are given in Section 4.

2. NUMERICAL MODEL

We investigate SEP acceleration at a 2D spherical shock propagating through the interplanetary
magnetic field in the solar equatorial plane (the x-y plane in Figure 1). We assume a uniform solar
wind velocity Vsw in the radial direction and the background magnetic field is the Parker spiral
magnetic field (Parker 1958):

B(r, θ) = B0

(R0

r

)2[
r̂ − rΩ� sin θ

Vsw

{
1−

(R0

r

)2}
φ̂
]

(1)
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Here θ = 90◦, Vsw = 400 km/s and B0 is the strength of the field at r = R0, where the field is
radial. We take B0 = 1.6 G near the surface of the Sun, which gives a field strength of 5 nT at 1 AU.
Note that this form of the Parker spiral differs slightly from that in Parker (1958). It assumes that
the azimuthal component of the solar wind velocity is Vφ = Ω�R

2
0 sin θ/r, instead of Vφ = Ω�r sin θ

as Parker assumed, and is consistent with the conservation of angular momentum (c.f. Weber &
Davis 1967; Priest 1984; Boyd & Sanderson 2003) in the limit of no magnetic stresses. The CME-
driven shock (the blue circle in Figure 1) expands outwards from the lower corona to 1 AU with a
constant speed Vsh = 1500km/s, and the shock center is fixed and offset from the center of the sun at
(xsh0, ysh0) = (2R�, 0). This assumption is generally a good approximation for the shocks driven by
fast and wide CMEs where the expansion is always dominant in the spatial evolution of the structure
(e.g., Kwon et al. 2014).

In this fast-mode shock, the transition layer is taken as a planar discontinuity locally since ∆sh ∼
di � Rsh, where ∆sh is the width of the shock and di is the ion inertial length. Thus, the macroscopic
plasma properties right behind the shock can be obtained from the MHD Rankin-Hugoniot conditions
(hereafter jump conditions). We assume that the solar wind plasma expands in a constant velocity
in the downstream region with the value determined by the jump conditions, and the magnetic field
evolves with the plasma following the ideal MHD equations. Therefore, the plasma properties at any
location L(x, y) in the downstream can be solved in three steps: (1) find the time t0 and loaction
L0(x0, y0) that this infinitesimal volume of plasma was crossed by the shock; (2) apply the jump
conditions at L0 to obtain the downstream values; (3) these values evolve from L0 to L through the
ideal MHD equations. A detailed description of this method can be found in Appendix A. Figure
2 presents the magnetic field lines in the upstream and downstream when (a) Rsh = 3R� and (b)
Rsh = 1AU. Here, we consider the strong shock condition where compression ratio of the shock s = 4.

We simulate SEP acceleration by numerically solving the Parker transport equation (Parker 1965):

∂f

∂t
=

∂

∂xi
[κij

∂f

∂xj
]− Ui

∂f

∂xi
+
p

3

∂Ui
∂xi

∂f

∂p
+Q, (2)

which describes the evolution of particle distribution function f with the dependence on particle
position xi, momentum p and time t. κij is the spatial diffusion tensor; Ui is the bulk plasma
velocity and Q is the source. This equation is general enough that contains most of macroscopic
transport effects, such as diffusion in the turbulent magnetic field, advection with the background
solar wind and energy change due to the compression or rarefaction of plasma flows. Note that, in
our model, the magnetic gradient and curvature drifts are always perpendicular to the x-y plane and
thus not included here. However, in three dimensions, these drift could play a role in the acceleration
processes depending on the shock geometry and background plasma properties (e.g., Giacalone &
Burgess 2010). The only application requirement of Equation 2 is that the pitch-angle distribution
of the particles should be nearly isotropic in the plasma frame. Here, we are particularly interested
in the distribution and acceleration of SEPs near the shock front or the ESP phase of SEP events
where the charged particles have undergone sufficient diffusion and the quasi-isotropic pitch-angle
distributions are generally achieved.

The symmetric components of the diffusion tensor κij can be written in terms of the magnetic
field vector and the diffusion coefficients parallel and perpendicular to the mean magnetic field as
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Figure 2. The magnetic field lines in the upstream and downstream of the shock at (a)Rsh = 3R� and
(b)Rsh = 1AU .

Giacalone & Jokipii (1999):

κij = κ⊥δij −
(κ⊥ − κ‖)BiBj

B2
(3)

The anti-symmetric components are neglected because of no drift motion in our model. The parallel
diffusion coefficient is assumed to scale inversely with the magnetic field strength κ‖ ∝ 1/|B| which
leads to a smaller κ‖ in the downstream than that in the upstream due to the compression of the
field across the shock. The momentum dependence of κ‖ is obtained from the quasi-linear theory
(Jokipii 1971) by assuming the magnetic turbulence in the solar wind following a Kolmogorov power
spectrum and given by κ‖ ∝ p4/3. The perpendicular diffusion coefficient κ⊥ is much smaller than
κ‖ (only several percents) and the ratio κ⊥/κ‖ is almost independent of particle’s energy (Giacalone
& Jokipii 1999). Thus, the diffusion coefficients can be written as κ‖ = κ‖0(B1AU/B)(p/p0)

4/3 and
κ⊥/κ‖ = 0.03. We consider protons as the source particles of the injection energy E0 = 250keV and
p0 is the corresponding momentum. B1AU and κ‖0 are the averaged magnetic field strength and the
parallel diffusion coefficient of the source particles estimated at 1 AU (Giacalone 2015). Note that the
diffusion coefficient could be much more sophisticated in the IMF and depends on a number of factors
regarding the local turbulence environment and magnetic structures (Zank et al. 1998, 2012; Wang
et al. 2022a,b). However, to resolve these contributions, we need to further make the assumptions
about the nature of turbulence (e.g., 2-D or slab) and the spatial dependence of correlation length
that haven’t been well understood. Here, we choose this relatively simplified form of κ‖ to avoid
these issues and it shows a relatively good agreement with the recent observations from Parker Solar
Probe (Li et al. 2022). The source particles are continuously injected to the shock front from the
Sun to 1 AU and the intensity falls off with the radial distance as Q ∝ r−2. Generally, the injection
efficiency has a strong dependence on the shock-normal angle in the quiet or very weak turbulent
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magnetic field, known as the ”injection problem” (Giacalone & Jokipii 1999; Zank et al. 2006; Guo
et al. 2021). However, these limits can be hardly held in most astrophysical environment because of
the pre-existing turbulence in the upstream which is believed to play an important role in producing
the suprathermal seed population (Giacalone 2005a). In this work, we choose the source particles
of sufficiently high energy (250keV ) so that the pitch angle distribution is almost isotropic in the
plasma frame and the shock geometry has little impact to the injection rate. Table 1 summarizes
the parameters we used in this simulation.

Table 1. Simulation parameters

xsh 2R�

ysh 0

Rmin 1.5R�

Vsh 1500km/s

Vsw 400km/s

B0 1.6G

E0 250keV

κ‖0 1019cm2/s

The Parker transport equation (Equation (2)) can be written into a Fokker–Planck form and solved
by numerically integrate the corresponding stochastic differential equations as (e.g., Kong et al. 2017):

∆x = r1
√

2κ⊥∆t+ r3

√
2(κ‖ − κ⊥)∆t

Bx

B
+ Ux∆t+ (

∂κxx
∂x

+
∂κxy
∂y

)∆t (4)

∆y = r2
√

2κ⊥∆t+ r3

√
2(κ‖ − κ⊥)∆t

By

B
+ Uy∆t+ (

∂κyy
∂y

+
∂κxy
∂x

)∆t (5)

∆p = −p
3

(
∂Ux
∂x

+
∂Uy
∂y

)∆t (6)

where r1, r2, and r3 are different sets of normalized random numbers which satisfy < ri >= 0 and
< r2i >= 1. The trajectories of pseudo-particles are resolved by numerically integrating the stochastic
differential equations. Due to the strong velocity gradients inside the transition layer, pseudo-particles
are accelerated at each time they cross the shock. The spatial size of the derivative is 10−5R� and
the time step we used here is 0.01 second which is small enough to ensure DSA working properly.
The outer boundary of the model is 2AU from the origin (center of the Sun) and the inner boundary
is determined by the iteration size in Appendix A which is about 15 − 20% of the shock radius in
the downstream (see Figure 2). We calculate the return probability as the pseudo-particles pass the
upstream or downstream boundaries to determine if they should be removed from the simulation
(Jones & Ellison 1991). We also use a particle splitting technique (Giacalone 2005b) to improve the
statistics.

3. RESULTS

Figure 3 presents the spatial distribution of SEP number density as the shock propagates through
the Parker spiral magnetic field at different shock radius, i.e., 3R�, 10R�, 30R�, 100R� and 1 AU,
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respectively. We find that the energetic particle density varies significantly in both space and time,
which is closely related to the local shock geometry (θBn) and radial distance. For example, at
early times, the ‘hot regions’ of high-energy SEPs form along the flanks of the shock and very few
particles are efficiently accelerated at the shock nose (Figure 3(a)). This is because the shock is quasi-
perpendicular near the two flanks and nearly parallel at the nose. The rate of acceleration is highest
at the quasi-perpendicular shock and lowest at the nose, and, thus, for a given simulation time, this
leads to these ‘hot regions’ at the flanks and few particles at the nose. Because the magnetic field
near the Sun is close to radial, this leads to a symmetric shock geometry about y = 0, and thus
the similar particle distributions along the two flanks (e.g., Figure 3(a)). However, as the shock
propagates outward, the connection between the shock front and Parker-spiral magnetic field causes
θBn to vary in time.

For the convenience of discussion, we define the shock nose as the intersection between the shock
front and y = 0 (φ = 0◦), and the west and east flanks as the parts of the shock at y > 0 and y < 0
respectively (see Figure 3(a)). In Figure 3(b) and (c), we find that the west flank gradually becomes
a preferred region for accelerating SEPs, which can be explained by considering the shock geometry
in the spiral magnetic field. Generally, the west flank has a larger averaged θBn than that in the east
flank, corresponding to a higher acceleration rate. This effect will be eliminated as the shock radius
increases in which case θBn becomes almost a constant along the shock front (e.g., Figure 3(d) and
(f)) and finally we obtain a relatively uniform SEP distribution at 1 AU.

Figure 3. The spatial distribution of SEPs with energy E > 10MeV as the shock propagates in the Parker
spiral magnetic field (grey lines) at different shock radius Rsh: (a)3R�, (b)10R�, (c)30R�, (d)100R� and
(e)1AU . The red ‘x’ indicates the shock center, fixed at xsh = 2R� and the black dashed circle presents the
position of shock front.

We now consider the longitudinal dependence of the particle energy spectra at different shock radii
(and time). The top three panels of Figure 4 present the number density of SEPs detected near the
shock at φ = W60◦ ± 2◦ (upper most plot), E60◦ ± 2◦ (middle plot at the top of this figure) and
0◦ ± 2◦ (bottom of the three plots at the top) as a function of particle’s energy and the time after
injection (∆t = t− tinj), where t is the current time step and tinj is the initial time when the particle
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Figure 4. Energy spectra at the west (W60◦± 2◦) and east (E60◦± 2◦) flanks of the shock as well as shock
nose (0◦ ± 2◦) when the shock radius reaches (a) 10R�, (b) 30R�, (c) 100R� and (d) 1AU . The top three
panels present the number density of SEPs detected at different locations along the shock front as a function
of particle’s energy and the time after injection. The button panel shows the corresponding energy spectra
of the particles in the top three panels. The dashed lines provide a reference of the flattest and steepest
spectra among a certain energy range.

was released to the shock. ∆t ∼ 0 indicates that the particles were just added to the system while
∆t > 0 means that the particles were injected earlier and traveled along with the shock to the current
location. A “V-shape” distribution can be identified in the top three panels of Figure 4(b-d) as the
shock moves outwards. We find that most of high energy particles are injected relatively early (large
∆t) as they have more chance to interact with the shock and achieve continuous acceleration from
the injected site to current location. The newly released particles (small ∆t) are generally of lower
energy because of the limited acceleration time. The maximum energy of these “fresh particles”
(say ∆t < 1 hour) decreases significantly with radial distance from more than 103MeV at 10R�
(Figure 4(a)) to around the injection energy 250keV at 1 AU (Figure 4(d)). This trend reflects the
local acceleration rates at different shock radii: very rapid acceleration near the Sun but almost no
acceleration at 1 AU. We also include adiabatic cooling in our model due to the expansion of the
solar wind. This is always present during the acceleration process, even though the acceleration
rate is considerably higher than the cooling rate, especially near the Sun. The particles that are
advected into the downstream and no longer come back to the upstream will keep cooling down in
the expanding solar wind, and thus form the other half of ‘V-shape’ distribution below the injection
energy.

The bottom panels in Figure 4 show the energy spectra of the corresponding particles in the top
three panels. The dashed lines provide references of the spectral indices. Note these spectra at the
flanks in Figure 4(a) are even harder than the spectrum at a strong shock (s = 4) predicted by DSA.
This is because in the DSA prediction the particle spectrum is calcualted right behind a planar shock
in the downstream which will give a ‘-1’ spectral index with the strong shock limit. However, the
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spectra in our work are obtained from both the up and downstream particles among a small angular
range (∆φ = ±2◦) so that the earlier accelerated particles in the upstream will also contribute to the
spectra. This approach can help us understand how the ESPs evolve in space and time (as shown in
the top three panels of Figure 4) but also gives rise to a flatter spectrum near the Sun. In Figure 4,
we can find that the maximum energy of the spectrum decreases as the shock moves outward. This is
mainly caused by two reasons: (1) the large diffusion coefficients away from the Sun make the shock
even harder to accelerate SEPs to very high energies; (2) the highest-energy particles generated near
the Sun can escape the trap of the shock and travel across the boundaries very shortly, which leads
to this population gradually reducing in time. As a result, the spectral indices and cutoff energy
generally decrease with the radial distance (Figure 4(a-d)). The spectra at shock flanks are much
harder than that at the nose in the region near the Sun but gradually converge as the shock expands
outward, which is consistent with the shock geometry evolution discussed above. Both the double
power-law (e.g., West and East flanks in Figure 4(a)) and the dip features (e.g., Nose in Figure 4(b))
can be found in the simulation. With considering the top three panels, we notice that both features
are related to the evolution of shock geometry and contributed by the earlier injected particles as
well as the locally accelerated components. For example, if we compare the third and fourth panels
of Figure 4(b) we can find that the low energy part of the spectrum (< 70MeV ) at the shock nose
(green line) is mainly produced by the local quasi-parallel shock which leads to a relatively steep
spectrum. However, if we trace this field line back to the initial position of the shock (t = 0), the
intersection between the field line and shock front will shift ∼ 5◦ anticlockwise toward the west flank.
This means that the high-energy part of the spectrum (> 70MeV ) is generated by the SEPs from a
preferential acceleration region (west flank) near the Sun, and thus give rise to a dip-bump structure.
In other words, the in situ measurements of SEPs may not only related to the local shock and solar
wind properties but also dominated by the plasma environment in the early state near the Sun.
These results reveal that the evolution of SEPs as the shock propagates from the Sun to the Earth
is crucial for the studies and prediction of large SEP events, and both acceleration and transport
processes should be included in the consideration.

To better understand the SEP distribution at 1AU, we investigate the initial conditions of these
particles when (and where) they were injected. Figure 5 presents the injection location of the particles
that were accelerated to high energies (E > 10MeV ) and then observed at 1 AU. The white ‘X’ sign
indicates the location of shock center. We see that most SEPs (that later become high energy
particles at 1AU) are injected at the west flank near the Sun. This confirms that west flanks is the
preferred region to accelerate high-energy particles due to the relatively large θBn . As the shock
propagates outward, the distribution of the source particles gradually spreads over a wider range
along the shock front and hardly any particles can be found beyond 100R�. This is because (1) the
source intensity decreases with radial distance (Q ∝ r−2) and (2) the diffusion coefficients increase
and become relatively uniform far from the Sun, leading to a lower acceleration rate. The SEP
distribution at 1AU is a result of contributions from both of these factors.

4. CONCLUSIONS

In this study, we developed a 2D kinematic model to study the SEP acceleration at a spherical
shock with the shock geometry evolving in both space and time as it propagates in the interplanetary
space from a few solar radii to 1 AU. The shock expands outwards from its center with a constant
speed, and the center is fixed in time and offset from the center of the Sun. The assumed source of
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Figure 5. The injection position of high energy particles (> 10 MeV) observed at 1 AU. The white ‘X’
denotes the location of shock center.

particles was mono-energetic (taken to be 250 keV), distributed uniformly along the shock, with a
flux across the shock that falls off as 1/r2, where r is measured relative to the center of the Sun. Our
model was a numerical solution to the the Parker transport equation, which provides the distribution
of particles accelerated at the shock and transported away from it. We are particularly focusing on
the distribution of high-energy particles in the shock region from a distance near the Sun and close
to 1 AU (ESPs) as the shock propagates through the IMF.

The primary conclusions from our study are:

1. The local shock/magnetic-field morphology plays an important role in the resulting distribution
of SEPs and their acceleration at the shock.

• Most of high-energy SEPs are accelerated close to the shock flanks instead of the shock
“nose” (along the Sun-Earth line) in the region near the Sun.

• The west flank of the shock is where there is a preferential acceleration of the particles
to high energies compared to the east flank and shock “nose” due to a larger θBn in this
region, and a higher acceleration rate of the particles.

2. > 10-MeV SEPs are accelerated very rapidly at the shock near the Sun but hardly any high-
energy particles are accelerated locally at the shock when it crosses 1 AU. This is caused by the
variation of the diffusion coefficient, being much smaller near the Sun and much larger far from
the Sun, and the fact that the acceleration rate depends inversely on the diffusion coefficient.

3. The simulated energy spectra vary significantly along the shock front at different shock radii
(at different times in the evolution of the shock). Moreover, both double-power law and dip
features are seen in the simulated energy spectra.

These results emphasize that in large SEP events, the particle intensities are not only determined by
the local shock structures and plasma environment but also strongly dependent on these properties
near the Sun. Both acceleration and transport processes should be considered to study the spatial
and temporal evolution of SEPs in the IMF. We hope this new model will provide some insights
into wide spread SEP events and help us a better understanding of the multi-spacecraft observation,
especially those close to the Sun, such as Parker Solar Probe and Solar Orbiter.
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APPENDIX

A. FLOW VELOCITY AND MAGNETIC FIELD IN THE DOWNSTREAM

As noted in Section 2, we assume the magnetic field is frozen into the plasma and the solar wind
flow in the downstream region of the shock remains in a steady state (relative to the shock) after
begin compressed by the shock. With these assumptions, we can obtain ~U and ~B at any point in the
downstream region based on the jump conditions at the time and location where the shock passed
this point of plasma, and how the flow expands in the downstream.

First, we apply the jump conditions to calculate the flow velocity and magnetic field downstream
of the shock based on those in the upstream. A schematic of the jump conditions is shown in
Figure A(a) where the subscripts 1 and 2 indicate the properties in the upstream and downstream
respectively. Both ~U and ~B are considered in the local shock frame. Here, ~U1 is a combination of
shock and solar wind velocities (~U1 = ~Vsh − n̂ · ~VSW ), and ~B1 is the nominal Parker spiral magnetic
field (Equation 2). We resolve ~U1 and ~B1 into the direction parallel and perpendicular to the shock
normal n̂ (U1‖ = U1 cos δ1, U1⊥ = U1 sin δ1, B1‖ = B1 cos θ1 and B1⊥ = B1 sin θ1), and the downstream
properties are given by the jump conditions as (Decker 1988):

U2‖ = U1‖/s (A1)

U2⊥ = U1⊥ +
(s− 1) cos θ1 sin θ1

M2
A1 cos2 δ1 − s · cos2 θ1

U1‖ (A2)

B2‖ = B1‖ (A3)

B2⊥ =
M2

A1 cos2 δ1 − cos2 θ1
M2

A1 cos2 δ1 − s · cos2 θ1
· s ·B1⊥ (A4)

where s is the plasma compression ratio across the shock and MA1 is the Alfvénic Mach number in
the upstream region.

To obtain ~B and ~U in the downstream, we use an iterative method to solve the time and position
when the shock crossed a plasma point of interest. Here, we consider a spherical coordinate system
of the origin fixed at the shock center (Figure A(b)). Given any point L(t) in the downstream of the
shock, the shock crossing position L0(t1) can be solved if we assume the flow velocity only has the
radial component U2‖:

L0(t1) = Rsh(t1) =
RL(t)Vsh −Rsh(t)U2‖

Vsh − U2‖
(A5)
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Figure 6. The schematics of (a) the MHD Rankine-Hugoniot (RH) conditions and (b) the geometry used
for solving the downstream magnetic field.

where RL(t) is the radial distance of point L(t) and U2‖ is the radial velocity obtained from the

jump conditions applied at L(t). L0(t1) is an initially guessed solution. Then, we solve ~U2(t1) at
L0(t1) through the jump conditions and convert this guessed plasma point back to current time step
t1 + ∆t: ~L(t1 + ∆t) = ~L0(t1) + ~U2(t1)∆t, where ∆t = (Rsh(t) − Rsh(t1))/Vsh. By comparing the
spatial difference between ~L(t1 + ∆t) and ~L(t), we can obtain the correction term ∆~l and apply it
to ~L0(t1) to get another guessed-point ~L0(t2) of improved accuracy. If we apply the jump conditions
at ~L0(t2) and repeat this routine N times, we can finally solve the position ~L0(tN) (N →∞) where
the shock just passed by this particular point of plasma of interest. Note that the efficiency of the
iteration can be significantly improved by applying a reasonable accuracy. For example, in this study
we consider the acceptance: ∆~l < 0.01Vsh∆t and the iterative times are generally less than 10.

After perturbed by the shock, the magnetic field will evolve with the expanding plasma following
B‖ ∝ 1/r2 and B⊥ ∝ 1/r. Here we only consider the radial expansion of the plasma flow in the

downstream since U2‖ � U2⊥. So that ~B at ~L(t) can be solved as:

BL‖ = BL0‖(
Rsh(tN)

RL(t)
)2 (A6)

BL⊥ = BL0⊥
Rsh(tN)

RL(t)
(A7)

where BL0‖ and BL0⊥ are the downstream magnetic field at ~L0(tN). Figure (2) presents the geometry
of the interplanetary magnetic field lines in the both up and downstream of the shock when the shock
is near the Sun and has a radius of 1 AU.
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